Some remarks on the formal power series ring

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Infinite Series

In the present paper we investigate the following problems. Suppose an >O for n_-I and Z a,=-. n=1 N° 1. Does there exist a sequence of natural numbers No =O, Ni l-, such that it decomposes the series monotone decreasingly : In order to state the second problem we define the index nk (c) as the minimum m such that (2) Now the second problem is as follows. are equiconvergent. m kc a j. j=1 N° 2....

متن کامل

Automorphisms of Formal Power Series Rings over a Valuation Ring

The aim of this paper is to report on recent work on liftings of groups of au-tomorphisms of a formal power series ring over a eld k of characteristic p to characteristic 0, where they are realised as groups of automorphisms of a formal power series ring over a suitable valuation ring R dominating the Witt vectors W(k): We show that the lifting requirement for a group of automorphisms places se...

متن کامل

On skew formal power series

We investigate the theory of skew (formal) power series introduced by Droste, Kuske [4, 5], if the basic semiring is a Conway semiring. This yields Kleene Theorems for skew power series, whose supports contain finite and infinite words. We then develop a theory of convergence in semirings of skew power series based on the discrete convergence. As an application this yields a Kleene Theorem prov...

متن کامل

ALGEBRAIC INDEPENENCE OF CERTAIN FORMAL POWER SERIES (II)

We shall extend the results of [5] and prove that if f = Z o a x ? Z [[X]] is algebraic over Q (x), where a = 1, ƒ 1 and if ? , ? ,..., ? are p-adic integers, then 1 ? , ? ,..., ? are linkarly independent over Q if and only if (1+x) ,(1+x) ,…,(1+x) are algebraically independent over Q (x) if and only if f , f ,.., f are algebraically independent over Q (x)

متن کامل

HYPERTRANSCENDENTAL FORMAL POWER SERIES OVER FIELDS OF POSITIVE CHARACTERISTIC

Let $K$ be a field of characteristic$p>0$, $K[[x]]$, the ring of formal power series over $ K$,$K((x))$, the quotient field of $ K[[x]]$, and $ K(x)$ the fieldof rational functions over $K$. We shall give somecharacterizations of an algebraic function $fin K((x))$ over $K$.Let $L$ be a field of characteristic zero. The power series $finL[[x]]$ is called differentially algebraic, if it satisfies...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin de la Société mathématique de France

سال: 1971

ISSN: 0037-9484,2102-622X

DOI: 10.24033/bsmf.1718